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| ABSTRACT N
. ASYMPTOTIC NORMALITY OF U-STATISTICS BASED -
g ON TRIMMED SAMPLES
Let xnl L. xnn be an ordered sample of size n. We establish asymptotic
- X cen
normality of U-statistics based on the trimmed sample n,[an]+1 £o0€ Xn,n—[en]'

where 0 < a,B8 < 1/2. This theorem and its multi-sample generalization are
illustrated by various statistics of importance for robust estimation of
location, dispersion, etc.

This unifies the flexibility of the class of U-statistics and the classical L.
principle of rejection of outliers. 1In addition, as a tool in our treatment, =
but also having broader interest, a uniform version of the central limit theorem

for U-statistics is provided. R
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1. Introduction. For robust estimation of 1location, the ordinary sample
mean is too sensitive to outllers. A classical and successful alternative is
the trimmed mean, for which asymptotic normality was established by Bickel
(1965). As discussed by Bickel and Lehmann (1975), for example, the trimmed
mean remains relatively efficient with respect to the untrimmed mean even in the

absence of outliers.

Viewing the trimmed mean as simply the ordinary mean defined on a trimmed

sample, we are motivated to consider other common statistics as well in this ;f}U‘
regard. In this paper we:study U-statistics in such fashion. The class of U- ?.';}{
statistics, introduced by Hoeffding (1948), contains a wealth of statistics of Q;‘%f
interest in their own rights and also contains statisties which serve as
approximations to statistics of more complicated type. A very significant

broadening of the scope of robust statistical inference is achieved, therefore,

by consideration of the class of U-statistics on trimmed samples.

Specifically, the statistics we treat are defined as follows. Let

X,l,...,xn be an i.i.d. sample from a df F, let Xn <L Xnn denote the ordered
Xi's, let 0 < a,8 < 1/2, and put nuB

"kernel" assumed (without loss of generality) to be symmetric in its arguments.

1
= n -[anl]-[8n]. Let h(xl.....xm) be a

For each such kernel we consider the associated U-statistic defined on the

(a,B)-trimmed sample, {.e.,

n -1
(1.1) U -(m“s) £ h(X_, ,...X ),

naB C ni1 nim SR
naf
where C denotes the set of m-tuples {(i_,...,1 ):{an)*1¢i <...<i < n-[8n]}.
naf 1 m -1 m -
(The cases a > 0, B = 0 and a = 0, B > 0 could also be considered but will be

omitted for simplicity. The case a = 8 = 0 corresponds to ordinary U-statistics

based on full samples, for which there {s already an extensive literature (see,

e

e.g., Serfling (1980), Chapter 5)).

AMS Subject Classifications : Primary 62E20, Secondary 62G35

Key words and phrases : U-statistics, trimmed samples, robust {nference,

nonparametric, uniform central limit theory.
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For m = 1 and the kernel h(x) = x, (1.1) gives the trimmed mean

(1.2) ¥ =n! nien] X

n L
naB  “oB y_fan)er ™
treated by Bickel (1965). For m = 2 and the kernel h(xl.xz) = I[x1+x2>0] we
obtain a version of the Wilcoxon one-sample statistic treated by Saleh (1976).
Evidently, these and only one or two other cases of (1.1) have been previously
studied in the literature, despite the abundance of natural possibilities. For

2
example, with m = 2 and h(x1,x2) - (x1—x2) /2, we obtain the statistic

2 )1 n-[gn] = .2
(1.3) S =~ (n -1 L (X - X )<,
naf af t=[anl+1 ni nof

a quite natural robust analogue of the classical sample variance. Surprisingly,
this has not been examined previously, although a Winsorized version has been
treated by Jaeckel (1971) (see also Bickel and Doksum (1977), p. 375).

Other methods of using trimming to produce robustness have appeared in the
literature. For example, see the "doubly trimmed standard deviation" of Bickel
and Lehmann (1976), and a "trimmed standard deviation" introduced by Bickel and i;{i&

Lehmann (1979) and treated theoretically by Janssen, Serfling and Veraverbeke

(1984). Also, consider the "trimmed U-statistics", produced by trimming on the

basis of ordered values of h(X1 .....Xi ), which are a special case of the
1

m
generallized L-statistics treated by Serfling (1984). The present development,

in wnich the trimming is applied directly to the sample values Xi' is perhaps f j
the most natural and reasonable way to implement a principle of rejection of ;f'"f4

outliers.

.

In Section 2 we establish asymptotic normality for statistics of form (1.1)

(under suitable regularity conditions), thereby extending and unifying Bickel's

1.
A e et a e

result for the trimmed mean and Hoeffding's result for the case of untrimmed

’
11

afa’a’a’a a’a

samples. We also cover the multi-sample case. The main results are given by

¢
,". ','.- RN

Theorems 2.1 and 2.2.
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Our method of proof utilizes recent work of Randles (1982) on U-statistics
based on kernels having unknown parameters. However, an alternate approach
consists of extension of Bickel's method for the trimmed mean. This is discussed
in Remark B of Section 2. The approach entails proving a result which is of
general interest, a uniform central 1limit theorem for U-statistics, extending
Parzen (1954). We present this result in the Appendix.

The remainder of the paper (Section 3) treats important examples : moment-
type statistics, Wilcoxon-type statistics and Gini-like measures of location and

spread. A number of interesting new statistics are examined.

2. General theorems. Our asymptotic normality result for the statistic

2
1.
Unas defined by (1.1) will involve mean and variance parameters uuB and 008

defined as follows. Corresponding to the given kernel h, we define for x,u,v €R

v v m-1
~m
g(x;u,v) = (1-g-a) " I{u<x<v) {...{ RO, X oo eenX ) 121 dF (x,),

~f“'f1l:?*"

v v m
wu,v) = Eg(Gu,v) = (1-8-a) " [o..f hlxpeenix ) W aF(x,),
u u i=1
A(u,v) = Var g(X;u,v),

A(u,v) = -glu;zu,v),
and

B(u,v) = g(v;u,v).
Then we define

b= w(F (a), F(1-8))

af
and

2
g . =m (A + 2auae AGB ZBuaB BuB + a{l-a) Ao.B

2
+ 8(1-8) BuB + 20B AuB BaB}'

where Aae = A(F_1(u), F-1(1-8)). ete.
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Y v v e ——— Y T TN T W e Tt~ e v s - Smoes e s o,

ASSUMPTIONS.
(A) F has a density f which is continuous and positive at F_1(u) and F-1(1~B)
i and is bounded in some é&-neighborhcods of F-'(u) and F_'(I-B);

(B) For some a < F_1(u) and b > F—1(1-B)

sup PhGxgeeeox) | =M <=
I a§x1....,xm <b
Fl(1-p)  F ' (1-8) -1
(C) The function g(x) = I -1 TN h(x,x1,...,x _]) I dF(xl) is
F ' (a) F (a) L Y

continuous at F—1(a) and F—1(1-8).

THEOREM 2.1. Let UnuB be given by (1.1). Assume conditions (A), (B) and

(C) and that 058 > 0. Then

d
p 1/2 _ N 2
! n (UnuB uus) N(O'Ouﬂ)'

The proof will utilize a series of lemmas involving certaln U-statistics
closely related to Unu . For the given kernel h, and for each u < v € IR, we

B
define an assoclated kernel

R(X,seeerX 5U,V) = (1-B-a) ™ I{u < X,sere,X < v} hix,,.00,x )
1 m -1 m 1 m

and we denote by Un(u,v) the ordinary (i.e., defined on the full sample) U-sta-
tistic based on this kernel.

Then we have

n -1
- aB n - m
(2.1) U (m ) (m) (1-8-a) Un(x

nad n,fan]+t xn,n-[ﬁn])

N and we readily obtain

[l
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LEMMA 2.1. Under condition (B),

(2.2) U = U (

-1
nap n Xn.[an]+1 ’ xn.n-[Bn]) * Op(n ).

Next we shew that the leading term in (2.2) may be approximated by
na

-1 -1
Toag = Up(F ' (a), FT1C1-8)) - u

LEMMA 2.2. Under conditions (A) and (B),

172
(2.2) Tnus - Un(xn.[un]*l ! xn,n-[Bn]) * op(n )

PROOF. We make direct application of Theorem 2.8 of Randles (1982), by

which (2.3) holds if Randles' Conditions 2.2 and 2.3 are fulfilled.

note that, by classical central 1limit theory for order statistics (or by (2.7)

and (2.8) below),

(2.1) (x - (F ), F'(1-8)) - op<n"’2).

n,[an]+1 '’ Xn.n-[Bn])

This is Randles' Condition 2.2 speclalized to our setting. Next we note that by

condition (B) there exists M, < = such that for all x ,...,xm and all (u,v) in

1 1
some neighborhood of (F-1(a), F—1(1—B)),

-1 -1
(2.5) Gy eeeyx suav) = alxyee,x F (a), FO(1-8)) [ < M.

-1 -1
Now let K be a neighborhood of (F (a), F (1-8)) which is contained in the
rectangular neighborhood of (F—1(a). F—1(1*B)) in which (A) and (B) hold. For

(u,v) € K and for a sphere D centered at (u,v) with radius d, such that DC K,

we have

8 " "X tand*t * *n,n-Cend’
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su hix,,...,x ;0 ,v') = h(x, ,...,x_;u,v)
(u',v'x))EDI 1 m 1’ m’ "’ I

_ m
< -8-a) " | nlxpyeex ) [T Hu-dex

{Sutd} T Ifu-d<x <v+d}
1=1 §e1 J
m
+ I I[v—d§x15v+d} M I{u-d<x .<v+d}].
i=1 j=i i
Then, using (A) and (B), we obtain
E{ sup PO, oeuX 50, v') - h(X_ ... X 5u,v) |}
(u',v') €D ! n ! o
-m utd v+d vid v+d v+d v+d m
<mO-g-0" 0 [ [ o [ [ o )in| dF (x,)]
u-d u-d u-d v-d u-d u-d i=1

< 2m Mo(1-B°a)_m[F(v*d)—F(u—d)]m—1[[F(u+d)-F(u-d)]+[F(v+d)—F(v~d)]]

(2.6) Mg,

for suitable choice of constant M2 not depending on choice of D. By Randles’

Lemma 2.6, his Condition 2.3 follows from our (2.5) and (2.6). Thus our lemma

follows. o

LEMMA 2.3. Under condition (B),

n
-1 -1 m S| Sl
Un(F (), F (1-8)) - Mg T n 15 (g(xi.F (a),F (1-8)) ”08]

1

+ o (n-l/Z).
p

PROOF. This i{s {mmediate from the projection theory of ordinary U-statis-
tics (see, e.g., Serfling (1980), Chapter 5). o
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LEMMA 2.4, Under condition (A) and (C),

(X X

n,land*1 * Xn,n-(gn)’ ~ Vas

-1/2

- A LaF (F ' (a)] + mp_; [1-6-F,(F'(1-8))] + o (n'/?),

where Fn denotes the usual sample df of X1,...,Xn.

PROOF. By condition (A) and a result of Ghosh (1971) on Bahadur represen-

tation of order statistics, we have

_ -1
a FH(F (Q)) -1/2

-1
(2.7) X - F (g) = — + 0 (n )
n,Lan]+1 £(F ' (a))
and 1
- 1-8-F (F "(1-8)) -
(2.8) X “len] ~ F l(1-8) - n = + 0 (n 1/2),
n,n=ien £(F (1-8)) P

By conditions (A) and (B) again along with condition (C),

du -1

ou _ _ =m f(F (a))A

WL (yv) = (F (a),F  (1-8)) of
and

ou -1

ou _ _ =m f(F (1-8))B__.

W (u,v) = (F (), F 1 (1-8)) o8

Thus, by the multivariate version of Young's form of Taylor's theorem (e.g., an

immediate extension of Theorem C on page 45 of Serfling (1980)),

(2.9) bu) - p e £(F ' (a)) Ag (u-F ()
-1 -1
+m f(F (1-8)) Bas (v-F "(1-8))

e o) tu,v) - (F @), £ C1-8)) |]).

Applying (2.4), (2.7) and (2.8) in (2.9), ve obtaln the desired result. o
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PROOF OF THEOREM 2.1. Define

¥(x;u,v) = m {{g{x;u,v) - u(u,v)] + Au,v)[F(u) - I{x<u}]

+ B(u,v)[F(v) - I{x<v}]).
Then, combining Lemmas 2.1 - 2.4, we may write

n
= oo -1, =172
UnuB ¥ap n 151 w(Xi.F (a),F (1-8)) + op(n ).

-1 - 2
Finally, note that w(X1;F (a), F 1(1—8)) has mean 0 and varijance 9up” o]

REMARK A. By Lemmas 2.1 and 2.2, we may write

* * -1/2
(2.10) U Mg ~ Un + 0n + op(n ),

naB 8

»*
where Un is an ordinary U-statistic with mean O and asymptotic variance
*®
parameter mZAaB' and On is a function of (two) order statistics. It can happen

»
that oiB > 0 but one of these two components is negligible, namely Un if AaB =0

* *
=B =0. T -
and 0 if AaB - he case that U 1s non-negligible (1.e., AaB > 0) can

occur even when the ordinary U-statistic based on the original kernel h is

degenerate. That i{s, a U-statistic which has nonnormal limit distribution when
defined on the full sample can have a normal limit distribution when defined on

a trimmed sample. O

It is stralghtforward to extend Theorem 2.1 to the case of multi-sample

U-statistics. For simplicity, we consider the 2-sample situation. Let
X, yeeesX be an 1.i.d. sample from df F, and Y_,...,Y i.i.d. from F_. Let
1 n, 1 1 n 2
h(x1....,xm H y1,...,ym } be symmetric within blocks and consider
1 2
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2 n, -lan 1-(8n 1 -1
Ugg = T ( o ) .
SEE g 1
b h (X . ,...,X P Y
Cnag 1h "1‘m1 nady
cDgg - {(11....,1m1;31....,jmz):[u1n1]+15115...<im15n1-[81n1]

and [u2n2]+153‘<...<3m2§n2—[82n2]}.

For u<v € IR and u'<v' € R, define associated kernels

h(x1....,x '

yeeesY 3 oU,vVU V)
m1 1 m2
-y
= 0 {1-B,-a,) “hiX,s.c0e,X_ 5¥.5e.0,¥ ).
i=1,2 i i 1 m1 1 m2
I(ugxl....,xm

1

<v,u < Yyreros¥p < vl

2

Denote by 51(x;u,v.u',v') the conditional expectation of this kernel given X‘-x.

and by gz(y;u,v,u',v‘) the conditional expectation given Y1-y. Put

and

U(U.Vyu' Iv' ) = Egl(xl;uvvnu' lv' ) - EBZ(YI;U'V'U' v' )v

Al(u,v,u',v') = Var g1(X1;u,v,u'.v'),

' 1 - . ' '
Az(u,v,u ,v') Var gZ(Y].u,v,u , V'),

Let yu, A1, A2 denote the evaluations of these quantities at

-1 =1
(1"81)' F2 ((1

Further 1let 51. 81. A2, 52 denote the partial derivatives of p(u,v,u',v') w.r.t.

-1

1
1

- -1 -1 -1
1) L i - -
u,v,u' and v' respectively, evaluated at (F‘ (a,), F1 1 8‘). F2 (uz). F2 @) 82)).

S e, Lo,
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- -1 . -1
Set A1 = Ai/mifi(Fi (ai) and B, = B /miri(F1 (1 81)) for i=1,2, assume that

i i
My
P + xl (i=1,2) as min(ni.nz) LN
1 2
and define
m2
2 i 2
g I X [Ai + 2aiuAi 2Bi“Bi + 01(1 ui)A1
1=1,2 i
+ 8 (1-8 )B2 + 22, 8,ABJ.
i 1771 17111
a Then we have :
g
&I THECREM 2.2. Assume that F1 (i=1,2) and h satisfy (analogues of) conditions

2
(A), (B), (C) and assume o > 0. Then, as min(n1.n2) + » such that
/ +n_) » x (i=1,2),
n (n1 n, 1( )

172 d 2
(n1*n2) (UnaB u) > N(0,0).

The proof 1s similar to that of Theorem 2.1. Also, from the above formula

for the asymptotic variance, it 1is easy to recognize what the asymptotic

variance parameter should be in the c-sample case for ¢ > 2.

REMARK B. Bickel (1965), in treating the trimmed mean, used a different ' ,.4
method of proof, which was also adapted and followed by Saleh (1976) with some

gaps in the development. Such an approach also can be followed for our Theorem

2.1, as follows. Conditional on X and X , the statistic U is
n,[an] n,n-[Bn]+1 naf

distributed as an ordinary U-statistic based on an 1.i.d. sample of size n

from a certalin df depending on the given two order statistics. By a uniform CLT

for U-statistics (see Appendix), we can apply Theorem 2 of Sethuraman (1961) and ff;xf

complete the proof in the manner of Bickel (1965). o B
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3. EXAMPLES.

3.1. Central moments

Here we consider robust (l.e., irimmed sample) versions of the classical

measures of location, dispersion, skewness, kurtosis, etc. Since all central
moments may be represented as U-statistics (Hoeffding (1948), p. 295), Theorem
2.1 yields the appropriate results. In particular, let us symmetrically trim
the sample {(a=8) and consider the trimmed mean (1.2) and the trimmed variance

(1.3). Let us also confine attention to df's which are symmetric about 0. Then

Theorem 1.2 yields

(3.1) n'2% 3 N0, (a,1-a)),
nhaa 1
with -
_ F o (1-a) _
(3.2) Zla1-a) = (-2 2 0f [ x’roax + 2alF (@),
F'(a)

which corresponds to Bickel (1965), and

172 2 4 2
(3.3) n Snaa N(u(a,1-a), o,(a,1-a)),
with .
-1 F (1_0) 2
(3.4) ula,1-a) = (12007 [ _, x“f(x)dx
F (a)
and -1 -
2 L F Uy F o (1-a) »
(3.5) o5(a,1=a) = (1-20) [ [ _ x'f(x)dx - (] _ X“F (x)dx)
2 1 1
F o (a) F (a)
-1
-1 2 F (1'0) -1 4
- dalF (@] | X“£(x)dx + 2a(1-a)(F (a)) 1.
F (a)
This explicit result for the asymptotic variance makes 1t possible to compare 1
Siua with competitors such as the usual sample variance and the mean absolute ; ‘
-1

deviation, using an appropriate asymptotic relative efficliency criterion based

on asymptotic varlance parameters.
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3.2. Wilcoxon-like statistics

In the one-sample case, assume F has density f symmetric about A and

consider testing A = O versus A > 0. This can be formulated as a problem of

testing P{X1 + x2 > 0} = 1/2 versus P{X] + x2 > 0} > 1/2, with corresponding

test statistic
-1
u = (M £ I{X, + X, > 0},
n% gq¢gen I

which 1is asymptotically equivalent to the one-sample Wilcoxon statistic.

Trimming leads to consideration of

- n-2[un])-1

Unaa 2

L I{x + X > 0}.
lan]*1¢i<yn-(an] ™M 0

From Theorem 2.1 it follows by routine calculations that, under the null

hypothesis A = O,
d

(v - 1/2) + N(O, —14t8a
naa

3(1-20)2

1/2
n

(3.6) )y

a result previously found by Saleh (1976),

In the two-sample case, let P = {(F,G) : F(x) < G(x), all x} and consider

testing F = G versus F = G, or in turn consider testing P{X‘ < Y1} = 1/2 versus
P{x1 < Yll < 1/2. The usual Wilcoxon-Mann-Whitney statistic has the following

formulation in the trimmed-sample case :
n,~[an,] n_-lon_]
3 1 1 2 2
u na- L L I[Xn 1Y 5
M72%  (n,-2lan, 1 (n,20an,]) 1=lan J*1 J=len,d+1 T17 T2

which can be studied by our Theorem 2.2, which yields

d
1/2 1 1 1+4g
(3.7) n'’¢ (u - 2) > N0, Ty
nne 2 MM y5(1-2002

)

under the null hypothesis, where n = n1+n2 and A = lim nl/n.

This result can also be found in Hettmansperger (1968).

¢




3.3. Gini-like measures of location and dispersion

For estimating location, Heilmann (1980) proposed to modify the sample
mean, which can be expressed as
-1
™ )

L median (xi.x
1<i<j<n J

X = G
to
y~! L median (X, ,X

L= ( ;
1<4<J<k<n

n
n 3 .xk).
In similar vein, we consider as competitors of the trimmed sample mean the

statistics UnaB of the form (1.1) corresponding to the kernels given by
(3.8) h(xl,...,xm) = median (x1,...,xm)

for m = 3,4,... Asymptotic normality is provided by Theorem 2.1. Let us note

that nalve computation of the statistic Una corresponding to (3.8) would

)
require O(nm) steps. It is of interest, therefore, that for the kernel (3.8)

UnuB may also be represented as an L-statistic,
n-[gn]
(3.9) I c ., X .,

nafB i=[an]+1 ni ni

where, with (g) =0 if a< b,

! Mes -1 1-fen]l-1  n-(gnl-i 1-[an]-1 n—[en]—i)]_
(3.10) "3 (m ) [( [m%l] ) | [%] )+ ( [g) ) ( [m%l]

Thus, given the c¢_,'s (which itself is a computational problem, of course), one

ni
can compute the statistic via the formula (3.9) in O(n log n) steps.

For estimating dispersion, Heilmann (1980) proposed to modify Gini's mean

difference, which is the U-statistic based on kernel h(x‘,xz) - |x1 - X but

21
which also can be expressed as
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(3.11) ¢ = (M L range (X,,X,)
: n20 ycici<n 1
‘ to ==
(3.12) G; - (g)—1 L range (X;, X,, X, ).
1<1<j<k<n 3

»*
In similar vein, we consider as competitors to Gn and Gn the class of statistics

UnaB of form (1.1) corresponding to the kernels given by

(3.13) h(XI""'xm) = range (x1.....xm)

*
’

for m = 3,4,.... Asymptotic normality is provided by Theorem 2.1.

It 1s well-known that the statistic Gn may be written as an L-statistic
(see, e.g. Serfling (1980)) and this is shown by Heilmann (1980) to be true also
for G:. It is easily seen that in fact, this 1is true in general for the
statistics Una based on the kernel (3.13), including the case a = B = 0

B

(untrimmed sample). The relevant cni's for a representation of form (3.9) are

found to be

n -1 .

aB i-fon]-1, _ n-[Bn]-1 ‘

(3.14) ey = ) LCT T - T g
An alternative way of generalizing the classical Gini's mean difference is ‘_ .

by considering the class of U-statistes based on the kernels of fcrm

s lx-x|P e
(3.15) h(x1.x2) |x1 x, | F, R

for p > O. This gives the "p-th power measures™ considered by Bickel and F‘~fi
Lehmann (1979). However, results of Boos (1979) indicate that the case p = 1 is
highly competitive to the cases p » 1. It fs of interest to examine the class
of "p-th power measures" on trimmed samples, which is now possible via Theorem }F:T

2.1,




T .
St A A A e e g e i i PR N

_15_

Appendix : a uniform CLT for U-statistics

Here we provide a useful extension to U-statistics of the uniform CLT for
sample means given by Parzen (1954). Let X1,...,Xn be independent IR-valued
random variables having common df F(x;0), where 8 €6 C ]Rp. p > 1, and let Un
denote the usual U-statistic based on a given symmetric kernel h(x1,...,xm).
Define

U(G) - Eeh)

g(x,0) = Ee{h(xr....xm) |x1 - x},
and

02(0) - Vareg\X,e).

THEOREM. Assume

2

(1) Egh” < K< =, all 6€ 0,
and
(2) 6(e) > L >0, all 6 € o,

for fixed constants K and L, and

(3) lim E/ {[g(X,8) - u(e)1? I{|x |> M}} = O, uniformly in 8 € o.
Moo

Then, uriformly in 6 € 0,

sup |P[n1/2 (Un-u(e))/mo(e) < x} -o(x)|= o(1). -
X AU

PROOF. Using the projection lemma as in Hoeffding (1948), we decompose
n”2 (Un—u(e))/mo(e) into a leading term which is a properly normalized sum of
i.1.d. r.v.'s and a remainder term. By a uniform version of Slutzky's Theorem 5
(Parzen (1954), Theorem 18D), it suffices to show that, uniformly in 6 € 0, the :
leading term has a normal 1limit and the remainder term tends to 0 in

probability.
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The former is obtained from the uniform normal convergence theorem for sample

means (Parzen (1954), p. 38), while the latter follows by an application of

Chebyshev's lnequality. o
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